ACR Methodology for N_2O Emission Reductions through Changes in Fertilizer Management

X-AGG Joint Meeting
Chicago, Illinois
October 4-5, 2010
Methodology at a glance

- Applicable to ALM project activities that involve a change in fertilizer management
 - Fertilizer rate, type, placement, timing, timed-release fertilizers, nitrification inhibitors, etc.
- Peer-reviewed, highly parameterized model
- Direct N\textsubscript{2}O from fertilizer application, and indirect N\textsubscript{2}O from leaching and ammonia volatilization, modeled for baseline and project
Methodology objectives

- Rigorous, scalable and cost-effective approach for accounting emission reductions from a broad range of practices
 - Practical for project proponents and farmers
 - Rigorous quantification (Tier 3)
 - Balance precision and cost
- Broad range of eligible practice changes
- Aggregation for cost-effectiveness and risk diversification
Development process

• Packard Foundation support
• Developed by Winrock International and Applied Geosolutions LLC
• Several interim products and analyses led to current approach
• Current status:
 – Background work 2009-2010
 – Methodology posted for public comment July-Aug 2010
 – Initial peer review complete
 – Anticipated release Oct/Nov 2010
Applicability conditions

- Management in both baseline and project cases involves use of fertilizer
- Records of yields and fertilizer application from at least 5 previous years
- Project must incorporate a minimum of 10 separate fields
- No significant decrease in yields as a result of project implementation
- Fertilizer use must not be increased in owned or managed lands that are not part of the project
- No drainage or flooding of wetlands
Project boundary

- **Physical:** all land areas uniquely identified
 - Aggregation likely (multi-farm level) though not required
 - Land and offsets title documented

- **GHG boundary**
 - No carbon pools (de minimis relative to primary impacts)

Sources

<table>
<thead>
<tr>
<th>Sources</th>
<th>Gas</th>
<th>Included / Excluded</th>
<th>Justification / Explanation of choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct and Indirect Emissions resulting from Fertilizer Application</td>
<td>CO₂</td>
<td>Excluded</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Excluded</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Included</td>
<td>Non-CO₂ gas emitted from fertilizer application</td>
</tr>
<tr>
<td>Emissions resulting from Fossil Fuel Combustion</td>
<td>CO₂</td>
<td>Included</td>
<td>Gas emitted from fossil fuel combustion</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>Included</td>
<td>Gas emitted from fossil fuel combustion</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>Included</td>
<td>Gas emitted from fossil fuel combustion</td>
</tr>
</tbody>
</table>
Baseline scenario and additionality

- Realistic and credible land use scenarios in absence of project activity evaluated using common practice, barriers, and investment analysis
 - Continuation of the pre-project fertilizer management (historical baseline)
 - Fertilizer management as modeled under the project but in the absence of registration as an ALM ACR project activity
 - Etc.

- Demonstrate additionality of project scenario via ACR three-prong test and add’l tool
<table>
<thead>
<tr>
<th>Input Category</th>
<th>Code</th>
<th>Input</th>
<th>Units</th>
<th>Mandatory / Optional</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>L1</td>
<td>GPS location of stratum</td>
<td>decimal°</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>Atmospheric background NH₃ concentration</td>
<td>μg N/m³</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>Atmospheric background CO₂ concentration</td>
<td>ppm</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>N concentration in rainfall</td>
<td>mg N/l or ppm</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>Daily meteorology</td>
<td>multiple</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>Soils</td>
<td>S1</td>
<td>Land-use type</td>
<td>type</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>Clay content</td>
<td>0-1</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>Bulk density</td>
<td>g/cm³</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>Soil pH</td>
<td>value</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td>SOC at surface soil</td>
<td>kg C/kg</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>Soil texture</td>
<td>type</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S7</td>
<td>Slope</td>
<td>%</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>Depth of water retention layer</td>
<td>cm</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S9</td>
<td>High groundwater table</td>
<td>cm</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>Field capacity</td>
<td>0-1</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>S11</td>
<td>Wilting point</td>
<td>0-1</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>Cropping system</td>
<td>CR1</td>
<td>Crop type</td>
<td>type</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CR2</td>
<td>Planting date</td>
<td>date</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CR3</td>
<td>Harvest date</td>
<td>date</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CR4</td>
<td>C/N ratio of the grain</td>
<td>ratio</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CR5</td>
<td>C/N ratio of the leaf + stem tissue</td>
<td>ratio</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CR6</td>
<td>C/N ratio of the root tissue</td>
<td>ratio</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CR7</td>
<td>Fraction of leaves and stem left in field after harvest</td>
<td>0-1</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CR8</td>
<td>Maximum yield</td>
<td>kg dry matter/ha</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>Tillage system</td>
<td>T1</td>
<td>Number of tillage events</td>
<td>number</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Date of tillage events</td>
<td>date</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Depth of tillage events</td>
<td>6 depths†</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>N Fertilizer</td>
<td>F1</td>
<td>Number of fertilizer applications</td>
<td>number</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>Date of each fertilizer application</td>
<td>date</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>Application method</td>
<td>surface / injection</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>F4</td>
<td>Type of fertilizer</td>
<td>type</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>F5</td>
<td>Fertilizer application rate</td>
<td>kg N/ha</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>F6</td>
<td>Time-release fertilizer</td>
<td># days for full release</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>F7</td>
<td>Nitrification inhibitors</td>
<td></td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>Organic Fertilizer</td>
<td>O1</td>
<td>Number of organic applications per year</td>
<td>number</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>O2</td>
<td>Date of application</td>
<td>date</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>O3</td>
<td>Type of organic amendment</td>
<td>type</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>O4</td>
<td>Application rate</td>
<td>kg C/ha</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>O5</td>
<td>Amendment C/N ratio</td>
<td>ratio</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>Irrigation System</td>
<td>I1</td>
<td>Number of irrigation events</td>
<td>number</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>I2</td>
<td>Date of irrigation</td>
<td>date</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>I3</td>
<td>Irrigation type</td>
<td>3 types‡</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>I4</td>
<td>Irrigation application rate</td>
<td>mm</td>
<td>M</td>
<td>X</td>
</tr>
</tbody>
</table>
Model calibration

• Crucial step as soil conditions, moisture and cropping affect C and N biogeochemistry and thus N$_2$O emissions

• Calibration parameters (default values available):
 – Maximum crop biomass (kg C/ha)
 – Biomass fractions (grain, leaves + stems, roots)
 – Biomass C/N ratio (grain, leaves + stems, roots)
 – Total N demand to reach maximum production (kg N/ha)
 – Thermal degree days
 – Water demand (g water / g dry matter)
 – N fixation index (1 for non-legume crops)
Modeling baseline and project scenarios

- Uncertainty ranges for soil input parameters defined via measurements or soil survey data
- Run DNDC in Monte Carlo mode
- Model output (for each stratum and Monte Carlo run, baseline and project):
 - Direct annual N_2O emissions ($NL_{DIRECT,j,i}$) in kg N$_2O$-N.ha$^{-1}$
 - Annual nitrate leaching loss ($NL_{LEACH,j,i}$) in kg NO$_3^-$-N.ha$^{-1}$
 - Annual ammonia volatilization and nitric oxide emissions ($NL_{VOLAT,j,i}$) in kg NH$_3$-N.ha$^{-1}$ + NO$_x$-N.ha$^{-1}$
Modeling baseline and project scenarios

\[
GHG_{BSL,N2O,E,j,i} = N_{DIRECT,j,i} + N_{VOLAT,j,i} \cdot EF_4 + N_{LEACH,j,i} \cdot EF_5 \cdot \frac{44}{28} \cdot GWP_{N2O}
\]

\[
GHG_{P,N2O,E,j,i} = N_{DIRECT,j,i} + N_{VOLAT,j,i} \cdot EF_4 + N_{LEACH,j,i} \cdot EF_5 \cdot \frac{44}{28} \cdot GWP_{N2O}
\]

- Baseline and project emissions in each stratum, summed across \(N \) Monte Carlo runs
- Emission factors for volatilization and leaching are based on IPCC defaults
- GWP of 310 \(\text{(SAR-100)} \)
Calculating net emission reductions

\[
BE = GHG_{BSL_N2O,E} + GHG_{BSL_FF,E}
\]

\[
GHG_{BSL_N2O,E} = \sum_{i=1}^{t^*} \left(\sum_{i=1}^{M} GHG_{BSL,N2O,E,i} \times A_i \right)
\]

\[
GHG_{BSL_FF,E} = \sum_{a} (Fuel_{a,t} \times EF_a)
\]

\[
PE = GHG_{P_N2O,E} + GHG_{P_FF,E}
\]

\[
GHG_{P_N2O,E} = \sum_{i=1}^{t^*} \left(\sum_{i=1}^{M} GHG_{P,N2O,E,i} \times A_i \right)
\]

\[
GHG_{P_FF,E} = \sum_{a} (Fuel_{a,t} \times EF_a)
\]

\[
ER_{ALM-ACR} = PE - BE
\]

\[
ERTs = ER_{ALM-ACR,t2} - ER_{ALM-ACR,t1}
\]

(uncertainty deduction but no leakage or risk buffer deductions)
Uncertainty

- Defined as 90% confidence interval as % of the mean
- Derived from 4,096 Monte Carlo runs
 - For baseline and project scenarios, by stratum
 - Total uncertainty: propagating errors across strata and between baseline and project emissions
- If $\text{ER}_{\text{ALM-ACR(ERROR)}} \leq 10\%$ of $\text{ER}_{\text{ALM-ACR}} \rightarrow$ no uncertainty deduction
- If $\text{ER}_{\text{ALM-ACR(ERROR)}} > 10\%$ of $\text{ER}_{\text{ALM-ACR}} \rightarrow$

\[= \text{ER}_{\text{ALM-ACR}} - (\text{ER}_{\text{ALM-ACR}} \times \text{ER}_{\text{ALM-ACR ERROR}} - 10\% \]
Project monitoring

- Geographic position of project boundaries over time
- Adherence to fertilizer management plan, data collection and management
- Area of strata
- Climate input parameters
- Cropping (type, planting date, harvest, C/N ratios)
- Tillage events
- Fertilizer applications: number, date, application (surface, depth), type (7), rate (kg N/ha), use of timed-release and nitrification inhibitors
- Organic amendments
- Irrigation events
- Fossil fuel use
Peer review comments

- Exclusion of soil C changes as *de minimis*
- Quantifying GHG emissions on yield-scaled basis?
- All models imperfect for complex biogeochemical systems
- Model complexity, input requirements, expertise needed
 - Simplified approach with larger discounts…?
 - Has to be “easy” for the farmer, not necessarily the proponent or verifier
- Monitoring of leakage
- Buffer for violations (not reversals)
- Embodied upstream emissions from fertilizer manufacturing
- Model structural uncertainty
Further information

Nicholas Martin
Chief Technical Officer, American Carbon Registry

nmartin@winrock.org
www.americancarbonregistry.org

(703) 842-9500
American Carbon Registry

• First U.S. private voluntary GHG registry
 – Founded 1996 by Environmental Defense Fund and Environmental Resources Trust
 – 30 million tons issued

• Pioneered system of transparent on-line reporting and serialization of verified project-based offsets – now the industry standard

• Joined Winrock International in 2007
 – Founded 1984 as a “public benefit corporation” under Arkansas state law
Offset types

- Forest carbon (AR, IFM, REDD)
- Agricultural and rangeland activities
- Livestock manure management
- Landfill gas
- CCS / enhanced oil recovery
- Fuel switching
- Industrial gas substitution
- Truck stop idling
- Fugitive methane in oil & gas production, processing, transmission
Winrock International

Nonprofit that works in the U.S. and around the world to empower the disadvantaged, increase economic opportunity, and sustain natural resources

- Build expertise, train leaders
- Apply sound science and economics
- Mobilize markets
- Promote innovation
- Help the disadvantaged
First interim product: development of a simplified methodology, with field testing

- Simplified methodology based on Bouwman et al 2002
 - Improve on simple IPCC defaults
 - Methodology required site-specific info on fertilizer type, soil carbon concentration, drainage, pH, soil texture, crop type
 - Test sites in AR (cotton), IA (corn), CA (lettuce) in 2009 season
 - Field data compared to DNDC modeling results

- Results:
 - Improvement on IPCC, far more specific to site
 - Insufficient for seasonal variations
 - In some cases methodology and model results diverge
 - Simplified methodology is powerful for broad regional analyses, but insufficient for rigorous project-level accounting
Second interim product: spatial analysis of N₂O emissions in 31 U.S. states

- Analysis of 129m acres wheat, corn and cotton in 31 states
 - 6.2m tonnes of nitrogen applied
 - 3 fertilizer types

- Modified Bouwman model:
 - Fertilizer quantity, type, soil texture and drainage, pH soil carbon concentration used to predict N₂O emissions

- 61m tonnes CO₂e emissions
 - 70% corn, 25% wheat, 5% cotton

- 0.12 - 1.45 tCO₂e ac⁻¹ yr⁻¹
County-level emissions from anhydrous ammonia (tCO$_2$e/acre-yr)