Smart Nitrogen Application Program: 4R Nutrient Stewardship to Reduce N_2O Emissions for Monetization of Carbon Offsets

C-AGG Meeting, July 20, 2011 – Chicago, IL
Lara Moody, Director of Stewardship Programs
Bill Herz, Vice President of Scientific Programs

The Fertilizer Institute
Nourish, Replenish, Grow
Project Team

- The Fertilizer Institute
- Camco
- Climate Check
- The Climate Trust
- International Plant Nutrition Institute
- USDA NLAE
- Michigan State University
- Colorado State University
- National Corn Growers Association
Overview

- Utilize nitrogen BMPs to reduce N$_2$O emissions
 - 4Rs – the right source at the right rate, the right time and in the right place
- Project focus on IA/IL corn – soybean rotations
- Develop a program to recruit & enroll producers
- Provide method to monitor & track fertilizer BMPs
- Use collected data to run & evaluate multiple protocols
- Use a selected protocol to quantify credits for aggregation and monetization
4R Nutrient Stewardship

• Simultaneously improve productivity & efficiency

• Match nutrient supply with crop requirements and to minimize nutrient losses from fields

• BMPs affecting fertilizer Source, Rate, Time, & Place are site specific
 • Practices chosen for a given field are dependent on soil, climate, and management conditions, crop selection, and other site specific factors
Task 1 – Develop SNAP & Nitrogen Desktop

- **SNAP** – website populated with info on:
 - Nitrogen BMPs
 - Climate change issues
 - Carbon markets
 - Water quality issues
 - Fact sheets
 - Videos

- **Nitrogen Desktop** – web enabled tool for:
 - Monitoring
 - Reporting
 - Verification

- **Grower outreach and education**:
 - Marketing literature
 - Winter association meetings
 - Expos
 - Targeted grower meetings
Task 2 – Protocol Evaluation, Road Testing, and Comparison

- Meta-analysis of 4R practices & \(\text{N}_2\text{O} \) reductions
- Modify protocols as needed with meta-analysis
- Utilize producer data to road test protocols
- Evaluate based on scalability, verifiability, effectiveness, ease of use, credit quantification

- Protocols involved:
 - Alberta NERP
 - American Carbon Registry
 - Verified Carbon Registry
Task 3 – Program Implementation

• Enroll 100 producers in IA & IL
 • Utilize SNAP in 2012 & 2013
 • Minimum of 500 acres per farm
 • Estimate 0.5 mTCO$_2$e per acre

• Work with growers and their agronomists to implement practices
 • Utilize EQIP funds for nutrient management practices

• Collect & process data through Nitrogen Desktop for carbon offset quantification and monetization
Task 4 – Program Evaluation

- Evaluate program for:
 - Producer acceptance
 - assess N management decision process
 - potential expansion to broader US
 - Program effectiveness
 - project implementation
 - environmental outcomes
 - social outcomes
 - financial benefits
<table>
<thead>
<tr>
<th>Task</th>
<th>Task and SubTask Description</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design and Build the Smart Nitrogen Application Program (SNAP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Programatic Design</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Stakeholder Outreach & Communications</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Evaluate Incentives for Practice Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Evaluation, Road Testing and Comparison</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Protocol Evaluation & NERP Training</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Protocol Road Testing (VCS, ACR, NERP)</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Protocol Results and Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Program Implementation, Project Aggregation and Market Transactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Program Implementation</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>Project Aggregation</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>Project Registration</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3.4</td>
<td>Project Verification and Credit Issuance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Market Transactions and Revenue Sharing</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Evaluation of SNAP covering producer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Producer Acceptance Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Program Effectiveness Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Narratives for Payment Requests</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Semi-Annual Reporting</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Final Report</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scientific Principles

• **Source** – ensure a balanced supply of essential nutrients, considering both naturally available sources and the characteristics of specific products, in plant available forms.

• **Rate** – assess and make decisions based on soil nutrient supply and plant demand.

• **Time** – assess and make decisions based on the dynamics of crop uptake, soil supply, nutrient loss risks and field operation logistics.

• **Place** – address root-soil dynamics and nutrient movement, and manage spatial variability within the field to meet site-specific crop needs and limit potential losses from the field.