Nitrogen Management for Carbon Credits-
Data Flow Analysis

C-AGG Denver
July 14, 2016
Jim Pollock, Prassack Advisors
Sara Kroopf, Environmental Defense Fund
This project is supported by the U.S. Department of Agriculture’s Natural Resource Conservation Service through Conservation Innovation Grant 69-3A75-16-016. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the USDA.
Agenda

• CIG Context
• Data Flow Analysis
• Barriers to Agricultural Data Collection
• Key Findings
• Next Steps
Agenda

• CIG Context
• Data Flow Analysis
• Barriers to Agricultural Data Collection
• Key Findings
• Next Steps
Nitrogen Management CIG- Goals

Infrastructure

reduce barriers for growers to participate in carbon markets by refining and improving existing nitrogen fertilizer management protocols and quantification tools
Nitrogen Management CIG- Methods

Infrastructure

develop or enhance market infrastructure which streamlines data collection, management and processing so that the data is connected from farm to quantification model to protocol
Agenda

• CIG Context
• Data Flow Analysis
• Barriers to Agricultural Data Collection
• Key Findings
• Next Steps
Data Flow Analysis Hypothesis

Significant efficiencies can be realized through the use of data collection software that gathers the information needed for nitrous oxide quantification methodologies.
Data Flow Analysis Hypothesis

Significant efficiencies can be realized through the use of data collection software that gathers the information needed for nitrous oxide quantification methodologies.
Agenda

• CIG Context
• Data Flow Analysis
• Challenges in Agricultural Data Collection
• Key Findings
• Next Steps
Jim Pollock, Partner, Prassack Advisors, LLC
Director Technology & Product Design

- BSEE – MIT
- HP & 6 Startups
- Software Solutions
- aWhere
 - HiRez Global Weather Data
 - APIs for FMS in Dev Countries
 - SMS data for Africa/S Asia
- Farmer Wannabe
Challenges in Ag Data – 1/4

• Large number of *farm activities* contributing to *GHG* emissions
 – How to measure and represent them
Challenges in Ag Data – 2/4

• **Volume** and **complexity** of farm data
 – Gigabytes for a single pass of a tractor, combine or drone
Challenges in Ag Data – 3/4

• The varied, inconsistent and complex ecosystems of data collection that continues to evolve in the farming community
Challenges in Ag Data – 4/4

• “Tension” between **difficulty** and **motivation** or **incentive** for the farmer to capture quality data
Connected Future Farm
Agenda

• CIG Context
• Data Flow Analysis
• Challenges in Agricultural Data Collection
• Key Findings
• Next Steps
What were the results? Dominant Data Ecosystems

Input Companies
- Monsanto
- The Climate Corporation
- Blue River Technology
- FieldScripts
- Vital Fields
- HydroBio
- yield pop
- SOLUM
- syngenta
- SST® Software
- AgConnections
- Agrible
- AgriEdge
- Excelsior
- Land
- db

Equipment/Independents
- Trimble
- Agri-Data Solution
- Harvest Mark
- Precision HQ
- Connected Farm
- SST® Software
-adapt-N
- Drone Deploy
- Raven
- Environex
- Sirrus
- JOHN DEERE
- DN2K
- Precision Planting
- Sage Insights™
- MyJohnDeere

Retailers
- United Suppliers
- DTN Connect
- AgSync
- AgX
- SST® Software
- AgVeritas
- EZ-Erpy
- ADVISOR
- LAND O’LAKES, INC.
- R7 Tool
- GEOSYS
- TAVANT
- MAVRX
- Agworld
- ESRI
- AGRIUM
- AGRIAN
- adapt-N
- echelon
- Sage Insights™
- JOHN DEERE
What were the results?
Data Captured, API and Export Capabilities

<table>
<thead>
<tr>
<th>Type</th>
<th>Agronomy</th>
<th>Data Coop</th>
<th>Finance</th>
<th>Equipt</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA CAPTURED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Boundaries</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Soil Types/Maps</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Tillage Events</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Planting</td>
<td>Seed Application</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Nitrogen Application</td>
<td>Yes</td>
<td>var only</td>
<td>Flat</td>
<td>Flat</td>
</tr>
<tr>
<td>Manure Application</td>
<td>Yes</td>
<td>-</td>
<td>Flat</td>
<td>-</td>
</tr>
<tr>
<td>Chemical Application</td>
<td>Yes</td>
<td>var only</td>
<td>Flat</td>
<td>Flat</td>
</tr>
<tr>
<td>Liming Application</td>
<td>-</td>
<td>-</td>
<td>Flat</td>
<td>Flat</td>
</tr>
<tr>
<td>Irrigation Events</td>
<td>Yes</td>
<td>limited</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Weather Data</td>
<td>Yes</td>
<td>limited</td>
<td>Yes</td>
<td>Wind only</td>
</tr>
<tr>
<td>Harvest/Yield Events</td>
<td>Yes</td>
<td>var only</td>
<td>Flat</td>
<td>Flat</td>
</tr>
<tr>
<td>Residue Burning</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
What were the results?
Data Captured, API and Export Capabilities

<table>
<thead>
<tr>
<th>Type</th>
<th>Agronomy</th>
<th>Data Coop</th>
<th>Finance</th>
<th>Equippt</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Yes, JSON</td>
<td>Yes, JSON</td>
<td>In Development</td>
<td>Yes, JSON, XML</td>
</tr>
<tr>
<td>Documentation</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Field Boundaries</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Manual</td>
</tr>
<tr>
<td>Polygon List</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KML</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shape Files</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Convert Shape to Polygon</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flat Rate for Applied/Yield</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Variable Rate for Applied/Yield</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Mfg supported</td>
<td>CanBus</td>
<td>FE CanBus</td>
<td>-</td>
<td>CanBus</td>
</tr>
<tr>
<td>Mfg Specific Binary or Normalized</td>
<td>Normalized</td>
<td>FE Normalized</td>
<td>-</td>
<td>Normalized</td>
</tr>
<tr>
<td>Calculate Flat equivalent?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
</tbody>
</table>
What were the results?

Data Captured, API and Export Capabilities

<table>
<thead>
<tr>
<th>Type</th>
<th>Agronomy</th>
<th>Data Coop</th>
<th>Finance</th>
<th>Equipt</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPORT</td>
<td>Yes, CSV</td>
<td>Yes</td>
<td>Yes, CSV</td>
<td>Yes, XML, CSV</td>
</tr>
<tr>
<td>Documentation</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
</tr>
<tr>
<td>Field Boundaries</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Polygon List</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KML</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Shape Files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Convert Shape to Polygon</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flat Rate for Applied/Yield</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Variable Rate for Applied/Yield</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mfg supported</td>
<td>Leaders</td>
<td>FE CanBus</td>
<td>-</td>
<td>CanBus</td>
</tr>
<tr>
<td>Mfg Specific Binary or Normalized</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Calculate Flat equivalent?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3 Candidate Software Architectures

Analysis of the Data Flow

Our Grower

Farm Mgmt Software
Finance
Operations
Agronomics
Sales

Carbon Credit Registry

Carbon Model
Easy
Candidate Software Architectures

1. Carbon Model Pulls

Our Grower

Farm Mgmt Software
- Finance
- Operations
- Agronomics
- Sales

Carbon Credit Registry

Carbon Model

Another UI Element

Academic Software
Candidate Software Architectures

1. Carbon Model Pulls

- Carbon Credit Registry
- Our Grower
- Farm Mgmt Software
 - Finance
 - Operations
 - Agronomics
 - Sales
- Hard
- Another UI Element
- Academic Software

Carbon Model
Candidate Software Architectures

2. Intermediary Pulls & Pushes

- Another UI Element
- Intermediary
- Carbon Credit Xchg
- Our Grower
- Farm Mgmt Software
 - Finance
 - Operations
 - Agronomics
 - Sales

Carbon Model
Candidate Software Architectures

2. Intermediary Pulls & Pushes

- Our Grower
- Another UI Element
- Intermediary
- Carbon Credit Xchg
- DB
- Farm Mgmt Software
 - Finance
 - Operations
 - Agronomics
 - Sales
 - Carbon Model

Hard
Candidate Software Architectures

3. FMS Pushes

Our Grower

$ Carbon Credit Xchg

Farm Mgmt Software

Financial Operations
Agronomics
Sales

API

Carbon Model
Candidate Software Architectures

3. FMS Pushes

Our Grower

Farm Mgmt Software
- Financial Operations
- Agronomics
- Sales

Easy

Carbon Credit Xchg

Carbon Model

API
Agenda

• CIG Context
• Data Flow Analysis
• Challenges in Agricultural Data Collection
• Key Findings
• Next Steps
Next Steps

• Investigate interest of Farm Management Software (FMS) companies to integrate with Carbon Models

• Share results with Carbon Model partners
 – If possible, assist them with publishing APIs

• Facilitate introductions between various data flow players

• Use results of the data flow analysis with growers enrolled in the pilot project